Moving Average Este exemplo ensina como calcular a média móvel de uma série de tempo no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Você gosta deste site gratuito Por favor, compartilhe esta página no GoogleMoving Filtros médios As médias móveis são propensas a whipsaws, quando o preço cruza para a frente e para trás em toda a média móvel em um mercado variável. Traders desenvolveram uma série de filtros ao longo dos anos para eliminar sinais falsos. O sistema de média móvel mais simples gera sinais quando o preço cruza a média móvel: Ir longo quando o preço cruza acima da média móvel de abaixo. Ir curto quando o preço cruza para abaixo da média móvel de cima. Os filtros são adicionados para medir objetivamente quando o preço atravessou a média móvel. Os filtros mais comuns são: Preço de Encerramento - um, dois ou três dias sucessivos devem todos fechar acima / abaixo da média móvel A barra inteira deve atravessar a média móvel Duas ou três barras (em sucessão) devem estar todas desobstruídas da média móvel A média móvel deve inclinar-se na direção do preço típico do comércio. O preço médio ou o fechamento ponderado também podem ser usados como substitutos do preço de fechamento. Trades só são introduzidos se a média móvel inclina na direção do comércio. Este filtro não funcionará com médias móveis exponenciais porque a média móvel exponencial sempre inclina-se para cima quando o preço fecha acima da média móvel e inclina-se para baixo se fechar abaixo. Sair quando o preço re-cruza a média móvel. Moving Average Slope pode ser usado em conjunto com outros filtros, como preço de fechamento. Exemplo A média móvel simples é usada com dois filtros: Passe o mouse sobre legendas de gráfico para exibir os sinais de negociação. Ir curto - dois fecha abaixo de uma queda média móvel. Go longa - média móvel está subindo agora e preço fechou acima da média móvel por 2 dias. O seguinte mergulho abaixo da média móvel (no início de janeiro) é filtrado para fora. O comércio longo é saído porque há dois fechamentos abaixo da média movente. Nenhum comércio de curto é inserido como a média móvel está inclinada para cima. Vá longo - dois fecha acima de uma média móvel em ascensão. Vá curta como há dois fecha abaixo uma queda média móvel. Vá longo - dois fecha acima de uma média móvel em ascensão. Ir curto - dois fecha abaixo de uma queda média móvel. Go longa - média móvel está subindo novamente e há 2 fecha acima dela. Observe quão lucrativo o longo comércio 2 é durante a forte tendência ascendente, em comparação com quando whipsaws preço em torno da média móvel relativamente plana. Freqüentemente comutando-o dentro e fora dos comércios. Os indicadores de tendência normalmente não são lucrativos, e devem ser evitados, durante os mercados de alcance. Junte-se à nossa lista de discussão Leia o boletim informativo Colin Twiggsrsquo Trading Diary, oferecendo análise fundamental da economia e análise técnica dos principais índices do mercado, ouro, petróleo bruto e forex. O cientista e engenheiros guia para processamento de sinal digital Por Steven W. Smith, Ph. D . Uma grande vantagem do filtro de média móvel é que ele pode ser implementado com um algoritmo que é muito rápido. Para entender esse algoritmo, imagine passar um sinal de entrada, x, através de um filtro de média móvel de sete pontos para formar um sinal de saída, y. Agora, veja como dois pontos de saída adjacentes, y 50 e y 51, são calculados: Estes são quase os mesmos pontos de cálculo x 48 a x 53 devem ser adicionados para y 50 e novamente para y 51. Se y 50 já foi calculado , A maneira mais eficiente de calcular y 51 é: Uma vez que y 51 tenha sido encontrado usando y 50, então y 52 pode ser calculado a partir da amostra y 51, e assim por diante. Depois que o primeiro ponto é calculado em y, todos os outros pontos podem ser encontrados com apenas uma única adição e subtração por ponto. Isso pode ser expresso na equação: Observe que esta equação usa duas fontes de dados para calcular cada ponto na saída: pontos a partir da entrada e pontos previamente calculados a partir da saída. Isso é chamado de equação recursiva, o que significa que o resultado de um cálculo é usado em cálculos futuros. (O termo recursivo também tem outros significados, especialmente na informática). O Capítulo 19 discute uma variedade de filtros recursivos em mais detalhes. Lembre-se de que o filtro recursivo de média móvel é muito diferente dos filtros recursivos típicos. Em particular, a maioria dos filtros recursivos tem uma resposta de impulso infinitamente longa (IIR), composta de sinusoides e exponenciais. A resposta de impulso da média móvel é um pulso retangular (resposta de impulso finito, ou FIR). Este algoritmo é mais rápido que outros filtros digitais por várias razões. Primeiro, há apenas dois cálculos por ponto, independentemente do comprimento do kernel do filtro. Em segundo lugar, a adição e subtração são as únicas operações matemáticas necessárias, enquanto a maioria dos filtros digitais requerem multiplicação demorada. Em terceiro lugar, o esquema de indexação é muito simples. Cada índice na Eq. 15-3 é encontrado adicionando ou subtraindo constantes inteiras que podem ser calculadas antes do início da filtragem (isto é, p e q). Em seguida, todo o algoritmo pode ser realizado com representação de inteiro. Dependendo do hardware usado, os inteiros podem ser mais do que uma ordem de magnitude mais rápida do que o ponto flutuante. Surpreendentemente, a representação de números inteiros funciona melhor do que o ponto flutuante com este algoritmo, além de ser mais rápido. O erro round-off de aritmética de ponto flutuante pode produzir resultados inesperados se você não for cuidadoso. Por exemplo, imagine um sinal de 10.000 amostras sendo filtrado com este método. A última amostra no sinal filtrado contém o erro acumulado de 10.000 adições e 10.000 subtracções. Isso aparece no sinal de saída como um deslocamento à deriva. Os inteiros não têm esse problema porque não há nenhum erro round-off na aritmética. Se você deve usar ponto flutuante com este algoritmo, o programa na Tabela 15-2 mostra como usar um acumulador de dupla precisão para eliminar essa deriva. Filtro médio de movimento Você pode usar o módulo Filtro de média móvel para calcular uma série de dados unilaterais ou Duas faces em um conjunto de dados, usando um comprimento de janela que você especificar. Depois de definir um filtro que atenda às suas necessidades, você pode aplicá-lo a colunas selecionadas em um conjunto de dados, conectando-o ao módulo Aplicar filtro. O módulo faz todos os cálculos e substitui valores dentro de colunas numéricas com médias móveis correspondentes. Você pode usar a média móvel resultante para traçar e visualizar, como uma nova linha de base suave para modelagem, para calcular variâncias contra cálculos para períodos semelhantes, e assim por diante. Esse tipo de média ajuda a revelar e prever padrões temporais úteis em dados retrospectivos e em tempo real. O tipo mais simples de média móvel começa em alguma amostra da série e usa a média dessa posição mais as n posições anteriores em vez do valor real. (Você pode definir n como quiser.) Quanto maior for o período n no qual a média é calculada, menor será a variação entre os valores. Além disso, à medida que aumenta o número de valores utilizados, menos efeito tem um valor único na média resultante. Uma média móvel pode ser unilateral ou bilateral. Em uma média unilateral, apenas os valores que precedem o valor do índice são usados. Em uma média de dois lados, os valores passados e futuros são usados. Para cenários em que você está lendo dados em fluxo contínuo, as médias móveis cumulativas e ponderadas são particularmente úteis. Uma média móvel cumulativa leva em consideração os pontos anteriores ao período corrente. Você pode pesar todos os pontos de dados igualmente ao calcular a média, ou pode garantir que os valores mais próximos do ponto de dados atual são ponderados mais fortemente. Em uma média móvel ponderada. Todos os pesos devem somar a 1. Em uma média móvel exponencial. As médias consistem em uma cabeça e uma cauda. Que pode ser ponderada. Uma cauda ligeiramente ponderada significa que a cauda segue a cabeça de perto, então a média se comporta como uma média móvel em um curto período de ponderação. Quando os pesos da cauda são mais pesados, a média se comporta mais como uma média móvel simples mais longa. Adicione o módulo Filtro de média móvel à sua experiência. Para Comprimento. Digite um valor de número inteiro positivo que define o tamanho total da janela através da qual o filtro é aplicado. Isso também é chamado de máscara de filtro. Para uma média móvel, o comprimento do filtro determina quantos valores são calculados na média da janela deslizante. Filtros mais longos também são chamados filtros de ordem mais alta e fornecem uma janela de cálculo maior e uma aproximação mais próxima da linha de tendência. Filtros de ordem menor ou menor usam uma janela de cálculo menor e se assemelham mais aos dados originais. Para Tipo. Escolha o tipo de média móvel a ser aplicada. O Azure Machine Learning Studio suporta os seguintes tipos de cálculos de média móvel: Uma média móvel simples (SMA) é calculada como uma média de rolamento não ponderada. As médias móveis triangulares (TMA) são médias duas vezes para uma linha de tendência mais suave. A palavra triangular é derivada da forma dos pesos que são aplicados aos dados, que enfatiza os valores centrais. Uma média móvel exponencial (EMA) dá mais peso aos dados mais recentes. A ponderação cai exponencialmente. Uma média móvel exponencial modificada calcula uma média móvel em execução, onde calcular a média móvel em qualquer ponto considera a média móvel previamente calculada em todos os pontos precedentes. Este método produz uma linha de tendência mais suave. Dado um único ponto e uma média móvel atual, a média móvel cumulativa (CMA) calcula a média móvel no ponto atual. Adicione o conjunto de dados que tem os valores que você deseja calcular uma média móvel e adicione o módulo Aplicar filtro. Conecte o Filtro de Média Móvel à entrada do lado esquerdo de Aplicar Filtro. E conecte o conjunto de dados à entrada do lado direito. No módulo Aplicar filtro, use o seletor de coluna para especificar quais colunas o filtro deve ser aplicado a. Por padrão, o filtro que você criar será aplicado a todas as colunas numéricas, portanto, certifique-se de excluir todas as colunas que não possuem dados apropriados. Execute a experiência. Nesse ponto, para cada conjunto de valores definido pelo parâmetro de comprimento do filtro, o valor atual (ou índice) é substituído pelo valor da média móvel. O Guia de Cientistas e Engenheiros para o Processamento de Sinal Digital Por Steven W. Smith, Ph. D. Filtros de Filtros Móveis Filtros do Filtro de Média Móvel Em um mundo perfeito, os designers de filtros só teriam que lidar com informações de domínio de tempo ou de domínio de freqüência codificadas, mas nunca uma mistura dos dois no mesmo sinal. Infelizmente, existem algumas aplicações em que ambos os domínios são simultaneamente importantes. Por exemplo, os sinais de televisão caem nesta categoria desagradável. As informações de vídeo são codificadas no domínio do tempo, ou seja, a forma da forma de onda corresponde aos padrões de brilho na imagem. No entanto, durante a transmissão, o sinal de vídeo é tratado de acordo com a sua composição de frequência, tal como a sua largura de banda total, como as ondas portadoras para a cor do amplificador de som são adicionadas, a restauração do amplificador de eliminação da componente de corrente contínua, etc. É melhor compreendida no domínio da frequência, mesmo se a informação de sinais é codificada no domínio do tempo. Por exemplo, o monitor de temperatura em uma experiência científica pode estar contaminado com 60 hertz das linhas de energia, 30 kHz a partir de uma fonte de alimentação comutada, ou 1320 kHz de uma estação de rádio AM local. Os parentes do filtro de média móvel têm um melhor desempenho no domínio da frequência, e podem ser úteis nestas aplicações de domínio misto. Os filtros de média móvel de passagem múltipla envolvem passar o sinal de entrada através de um filtro de média móvel duas ou mais vezes. A Figura 15-3a mostra o núcleo de filtro global resultante de uma, duas e quatro passagens. Duas passagens são equivalentes à utilização de um kernel de filtro triangular (um núcleo de filtro retangular convolveu-se consigo mesmo). Após quatro ou mais passagens, o kernel do filtro equivalente parece um Gaussiano (lembre-se do Teorema do Limite Central). Como mostrado em (b), passagens múltiplas produzem uma resposta de passo em forma de s, em comparação com a linha reta da passagem simples. As respostas de freqüência em (c) e (d) são dadas pela Eq. 15-2 multiplicado por si para cada passagem. Isto é, cada vez que a convolução do domínio resulta numa multiplicação dos espectros de frequência. A Figura 15-4 mostra a resposta de freqüência de outros dois parentes do filtro de média móvel. Quando um Gaussiano puro é usado como um kernel de filtro, a resposta de freqüência é também um Gaussiano, como discutido no Capítulo 11. O Gaussiano é importante porque é a resposta de impulso de muitos sistemas naturais e artificiais. Por exemplo, um breve pulso de luz que entra numa longa linha de transmissão de fibra óptica irá sair como um pulso Gaussiano, devido aos diferentes caminhos tomados pelos fótons dentro da fibra. O kernel de filtro gaussiano também é usado extensivamente no processamento de imagens porque possui propriedades únicas que permitem a rápida convolução bidimensional (ver Capítulo 24). A segunda resposta de freqüência na Fig. 15-4 corresponde a usar uma janela de Blackman como um kernel de filtro. (A janela do termo não tem nenhum significado aqui é simplesmente parte do nome aceitado desta curva). A forma exata da janela de Blackman é dada no Capítulo 16 (Equação 16-2, Fig. 16-2) no entanto, se parece muito com um Gaussiano. Como são esses parentes do filtro de média móvel melhor do que o filtro de média móvel em si Três maneiras: Primeiro, e mais importante, esses filtros têm melhor atenuação de banda de interrupção do que o filtro de média móvel. Em segundo lugar, os grãos de filtro diminuem para uma amplitude menor perto das extremidades. Lembre-se de que cada ponto no sinal de saída é uma soma ponderada de um grupo de amostras da entrada. Se o kernel do filtro diminui, as amostras no sinal de entrada que estão mais distantes recebem menos peso do que as próximas. Em terceiro lugar, as respostas de passo são curvas suaves, ao invés da linha recta abrupta da média móvel. Estes dois últimos são geralmente de benefício limitado, embora você possa encontrar aplicações onde eles são verdadeiras vantagens. O filtro de média móvel e seus parentes são todos aproximadamente o mesmo na redução de ruído aleatório, mantendo uma resposta passo agudo. A ambiguidade reside na forma como o tempo de subida da resposta ao passo é medido. Se o tempo de subida é medido de 0 a 100 do passo, o filtro de média móvel é o melhor que você pode fazer, como mostrado anteriormente. Em comparação, a medição do tempo de subida de 10 para 90 torna a janela Blackman melhor do que o filtro de média móvel. O ponto é, isto é apenas disputas teóricas considerar estes filtros iguais neste parâmetro. A maior diferença entre esses filtros é a velocidade de execução. Usando um algoritmo recursivo (descrito a seguir), o filtro de média móvel será executado como relâmpagos em seu computador. Na verdade, é o mais rápido filtro digital disponível. Várias passagens da média móvel serão correspondentemente mais lentas, mas ainda assim muito rápidas. Em comparação, os filtros Gaussiano e Blackman são extremamente lentos, porque eles devem usar convolução. Pense um fator de dez vezes o número de pontos no kernel do filtro (com base na multiplicação sendo cerca de 10 vezes mais lento que a adição). Por exemplo, espere que um Gaussiano de 100 pontos seja 1000 vezes mais lento do que uma média móvel usando recursão.
No comments:
Post a Comment